

CSC-40098

MSc Project

Clinical Guidelines Authoring Platform for a Health Service

Dan Bayford

Keele University

 2

Abstract

Clinical guidelines are a resource for medics to refer to when treating their patients. Having

access to concise, up to date medical information has been shown to improve clinical

outcomes.

In recent years, the Bedside Clinical Guidelines Partnership (BCGP) project has attempted to

digitise these records to allow for clinicians to access them via platforms such as smartphones

and tablets, rather than relying on hard copies stored at certain locations within the hospital.

The current proposed frontend solution for the platform wraps static markup created with

standard web technologies such as HTML, CSS, and JavaScript, and presents the user with a

browser-like experience.

This project proposes that the Wagtail content management system (CMS) could be used as

the platform to create, edit and store these digitised guidelines, and implements a prototype

that was then used as the data source to build static versions of the guidelines that the

current frontend solution relies upon.

It was found that Wagtail could implement all the broad project requirements, and therefore

could be considered a viable alternative for the wider project in place of the current, bespoke

solution being developed.

 3

Acknowledgements

I would like to thank my project supervisor Beran Necat for assisting me throughout this

project. Any issues I had or clarifications I required were always responded to quickly and

with useful advice or guidance. My fortnightly reporting in with him kept the project on a

rapid but manageable pace and allowed me to meet all my deliverables within the project

timescale.

I would also like to thank Professor Ed de Quincey, my contact at the University for the

Bedside Clinical Guidelines Partnership (BCGP) project. Professor de Quincey really helped

me in building out the project requirements from the rather brief statement from the project

module, and clarified much of the functionality required from a potential solution, as well as

supplying me with feedback so I could assess the success of the project.

Finally, I’d like to thank my wife, Ashlee. She’s put up with me spending hours on this

project and the wider course over the last couple of years. Worse than that, she has then been

subjected to me attempting to talk to her about some of the finer points of computer science. I

promise I’m finished now.

 4

Table of Contents

1 Introduction 7

2 Existing Project Background 8

 2.1 Clinical Guidelines 8

 2.2 The Bedside Clinical Guidelines Partnership (BCGP) 9

 2.3 Guideline Process 9

 2.4 Guideline Structure 11

 2.5 Current Frontend Solution 11

3 Project Deliverables 12

4 Proposed Solution 13

5 Technical Background Discussion 15

 5.1 Architecture and Stack Overview 15

 5.2 Django Web Framework 15

 5.3 Wagtail CMS 19

 5.4 Django REST Framework 21

 5.5 Docker 21

 5.6 Swagger UI 23

 5

 5.7 Next.js 23

6 Development and Functionality 25

 6.1 Project Management 25

 6.2 Project Architecture and Deployment 26

 6.3 Project Functionality 30

 6.3.1 Dynamic Content 30

 6.3.2 Regional Content 34

 6.3.3 Live Preview 37

 6.3.4 Multiple User Levels and Moderation System 40

 6.3.5 Diffing Functionality 44

 6.3.6 Search Functionality 46

 6.4 Project Deliverables 49

 6.4.1 Hosted CMS 49

 6.4.2 Exposed API 50

 6.4.3 Static Builds 51

7 Testing 55

 7.1 Identified Issues 56

 6

8 Conclusions and Potential Future Development 57

 8.1 Project Feedback 57

 8.2 Ideas for Future Development 58

 8.2.1 Improved Testing Strategy 58

 8.2.2 Monolithic Codebase 59

 8.2.3 Managed Services 59

 8.2.4 Stack Review 60

 8.3 Conclusions 61

References 64

Appendix 67

 7

1 Introduction

This development project is an adaptation of a project previously offered on the Keele

University Computer Science MSc pathway:

 “JM1 - Developing an authoring platform to create and edit existing clinical guidelines.”

The original project brief was as follows:

“As part of an ongoing research study at the School of Computing and Mathematics, we have

developed a mobile device application to deliver clinical information to NHS clinicians. This

MSc project aims to build a prototype clinical guideline authoring and editing platform

based on existing web frameworks. The goals are to:

• produce a web- based application where users can utilise CRUD functions (Create,

Read, Update, Delete) with existing guideline documents

• implement a multi-level user admin system

• utilise HTML, CSS, JS, and other web-based languages

• test the system to ensure it meets usability guidelines

• conduct literature review/research/testing to ensure the system is efficient”

Although the opportunity to work on the original project was not available to students at the

start of this project module, a proposal was submitted and accepted to create a prototype

platform build on the Wagtail (Wagtail CMS, n.d.) content management system.

 8

2 Existing Project Background

2.1 Clinical Guidelines

When a clinician treats a patient, they apply logical steps based on their current medical

knowledge of a suspected condition. The potential scope of conditions that some clinicians

might treat is vast, and if wider medical science has evolved since the clinician was last

instructed on current best practice for a given condition, the care given to a patient may not

be to the highest standard. Clinical guidelines are:

‘Systematically developed statements to assist practitioner and patient decide about

appropriate healthcare for specific clinical circumstances (Pereira et al, 2022)’

These guidelines combine peer-reviewed evidence and current considered best practices to

present to the treating clinician accurate medical information. They are maintained by

specialists who keep abreast of the changing literature and techniques across various clinical

fields. The guidelines also promote a consistency of treatment across a medical organisation.

However, clinical guidelines published by the likes of the National Institute for Health

and Clinical Evidence (NICE) and other appropriate bodies are often extremely

comprehensive and not best suited for quick reference in a potentially acute medical situation

on a hospital ward.

 9

2.2 The Bedside Clinical Guidelines Partnership (BCGP)

In 1993, the North Staffordshire Hospital (now University Hospital of North Staffordshire)

made a review of how it delivered acute medical care (Smith et al., 1998). One of the

reviews findings were that faster clinical decision making could potentially save up to 4,000

bed-days per annum and recommended that a more practical version of clinical guidelines be

made available as a resource for its clinicians.

After a few years of development, the first digital version of the guidelines was released in

1996, before being offered to nearby trusts on a subscription basis from 1997. The West

Mercia Clinical Guidelines Partnership was established in 1998, later renamed in 2004 to the

current Bedside Clinical Guidelines Partnership (Pantin et al., 2006). The current board

consists of consultant physicians, librarians, coordinators, and developers who meet regularly

to discuss the development and improvement of guidelines based on feedback, new clinical

evidence, and current literature.

2.3 Guideline Process

The current guideline process involves several steps and multiple users. The users involved in

the actual guideline generation, moderation and approval stages would include:

• Librarians – monitor advances in medical evidence from sources such as Medline,

PubMed and NICE, collating any relevant information into spreadsheets. Before a

new release of the platform, they submit their findings to the secretariat.

 10

• Secretariat – the secretariat acts as the process administer. They receive new evidence

from the librarians (as mentioned above), distribute this new information to the

relevant clinical author(s), field any queries on it and submit the updated guidelines to

the clinical quality controllers (QCs) for final approval, highlighting any changes.

• Clinical Authors – each guideline has a responsible clinical author, usually a doctor,

who will integrate the new evidence into the existing guideline Word document and

once satisfied, return it to the secretariat.

• Clinical QCs – the clinical QC is normally a senior doctor in the appropriate field

who will review the amended guideline and either give a final approval for

publication or reject the changes.

Beyond the above, there would also likely be a requirement for access to clinical developers

and external quality and safety auditors, although they would not generally be involved in

the core operation of the platform.

Figure 1 shows the current workflow for updating an existing medical guideline:

Figure 1 – Clinical Guideline Workflow

The process for creating a new guideline is similar, except the clinical author would create a

 11

new Word document from the supplied evidence, rather than editing an existing one.

2.4 Guideline Structure

A guideline itself can be made up from various different types of content (Mitchell et al.,

2021). The current list of supported content types include:

• Text

• Images

• Videos

• Labels (information, warning, and danger)

• Calculators

• Flowcharts

The guidelines do not follow a fixed structure, so two different guidelines can have

completely different content types in the main body of the report.

2.5 Current Frontend Solution

The current frontend solution (Mitchell et al., 2020) is mobile based and requires the

guidelines to be constructed from HTML, CSS, and vanilla JavaScript, potentially with no

internet connection when being used. Each guideline is its own HTML file, linked to the

appropriate styling and scripts. A native application then ‘wraps’ these files and allows

navigation between them, in a manner similar to a web browser.

 12

3 Project Deliverables

In consultation with Professor Ed de Quincy, the BCGP project lead at the University, the

following key deliverables were agreed upon for a potential solution:

• A dynamic main content type as the core of each guideline, containing options for:

o WYSIWYG (‘what you see is what you get’) editor

o Images

o Embedded video

o Various custom content blocks (for example, Labels, Calculators)

• An option for extra regional content on each guideline

• Live preview of editing guidelines within the CMS

• Multiple user levels within the CMS (author, QC, developer) and an approval system

• A diffing functionality between different versions of the same guideline

• Search functionality available at API layer

It was felt that a solution with these deliverables would meet the requirements from the

original project brief. In addition, by implementing a headless, client agnostic architecture,

the proposed solution would allow for future development of the project to potentially

include web based and native application front end solutions. As per Mitchell (2022, pp 85),

there are also limitations as to what technologies the eventual front end would want to

support to maintain cross platform support, and a JSON API interface would likely be the

most flexible solution.

 13

4 Proposed Solution

This project proposes the use of the Wagtail CMS to create the content authoring platform.

Wagtail offers, either as standard or via configuration, all of the required functionality

specified in the project deliverables:

• Mixed and dynamic content nodes

• Live preview functionality

• Configurable moderation workflows

• Diffing functionality across the history of content nodes

• Search functionality

• The ability to expose an API

The NHS already uses Wagtail for some of its own content management (NHS Digital,

2018), so it is already a solution that they are aware of and have a degree of confidence and

experience in. Since Wagtail extends the Django (Django, 2019) web framework, it also

benefits from the frameworks existing advantages (MDN Web Docs, 2023), such as:

• Secure, with regular release patches

• Consistent release cycle and long term supported (LTS) versions for production

(Download Django, n.d.)

• Highly scalable

• ‘Batteries included’ philosophy which provides a lot of common web application

functionality (user management, sessions, authentication) with the core install

• Highly configurable with a large ecosystem of third-party libraries

• Highly configurable to developers who can write Python

 14

Another advantage of using an already existing solution such as Wagtail and then configuring

it to the project requirements is the existing community around the platform. As well as the

developer documentation (docs.wagtail.com, 2023), there is also dedicated editor

documentation (Wagtail Guide, 2023) for the eventual end users to refer to, created and

maintained by the Wagtail core team.

Although the core deliverable of the project is the CMS platform itself, it will also provide

static builds of the front-end generated using the exposed API as a means to prove that the

headless CMS solution is a viable option for the project. This will be build using the Next.js

(nextjs.org, 2023) framework, a production framework that extends the React UI library

(Meta Open Source, 2023). Next.js offers a static site generation (SSG) build command, and

therefore could be used to build the client-side markup from the exposed Wagtail API.

There will also be a documentation solution for the exposed API, so a future developer would

be able to investigate the appropriate data structure. The Swagger UI framework (Swagger,io,

2019) will be used to generate the appropriate schema and provide an interface.

The entire CMS will be developed and deployed within Docker (Docker, 2018) containers.

By isolating the Python codebase within Docker containers, the surrounding environment

can be controlled and made easily repeatable, which is highly desirable in an application that

may be deployed in multiple instances for the different NHS regions that may use it.

 15

5 Technical Background Discussion

5.1 Architecture and Stack Overview

The proposed CMS solution is Wagtail CMS, which is based upon the Django web server

framework. The entire back end of the solution will be developed and deployed inside

Docker containers and hosted on a virtual private server (VPS). For the prototype version, the

database will be a dedicated Docker service.

The CMS API layer will be documented using Swagger UI, a tool that can generate a schema

of a database and allow front end developers to explore the data structures exposed by

the API via a browser based interface.

The front end client proof-of-concept will be built using Next.js. The final build will be

entirely static, which is a requirement of the current mobile frontend solution.

There now follows a brief explanation of the relevant technologies to help understand the

application architecture.

5.2 Django Web Framework

Django is an open-source Python web framework designed to build secure and scalable web-

based applications. It is used in at least some capacity by many extremely large tech

companies such as Instagram, Spotify, and YouTube (StackShare, n.d.). Although initially

developed as a traditional web server using the model view template (MVT) pattern to deliver

 16

server rendered web pages, it is also capable of acting as an API to a headless client, as is the

case with this project.

Essentially, Django routes HTTP requests to an appropriate view (what would traditionally

be called the controller in an MVC pattern), which should generate some sort of HTTP

response. This may include HTML, JSON, or XML, with or without data from a database.

The Django model, a Python class, is the interface between the view and the database. The

models make use of the Django object relational mapper (ORM) to allow the developer to

interact with the database through the model via Python objects known as QuerySets, rather

than directly writing SQL.

Figure 2 explains the basic request and response cycle. Note that the web server gateway

interface (WSGI) connector converts the HTTP request to an HTTPRequest object for

Django to process, and that the view instantiates an HTTPResponse object to send back to the

WSGI. For clarity, the various layers of Django middleware have been omitted.

Figure 2 – Django Request and Response Cycle

 17

The web server would likely be either Apache or Nginx, although anything that can interface

with the WSGI layer can be used. For performance reasons, any static assets such as CSS or

JavaScript are usually served directly from the web server without ever reaching Django.

Requests for Django are routed via a WSGI interface such as Gunicorn (gunicorn.org, n.d.),

and then the Django URL dispatcher system would determine the appropriate view to handle

the incoming request. Views must then either return a response or throw an exception.

Architecturally, Django consists of a single top level project constructed of various

applications (Python modules) to add functionality, as shown in Figure 3.

Figure 3 – Django File System Architecture

The directory containing the settings.py file is by default named the same as the project, but

developers often rename it to something more appropriate such as core or settings, as in the

diagram. This directory contains the settings.py file (the main project configuration file), the

top level URL dispatcher and the WSGI interface.

 18

The manage.py file contains a Python script that exposes various Django management

commands in the terminal, such as running the development server, creating migration files

for data models and collecting static assets for deployment.

Each individual application can be made up of any number of directories and files, depending

on the functionality. The only required files are the init.py file so that Python can treat the app

as a Python module and import it, and the app.py file which is used to register the app inside

the main settings.py file. It is common to have an application level urls.py file that the root

URL dispatcher can point at and then it will handle the routes for its own application. The

migrations directory holds the migration files for the relevant Django model.

Top level directories for templates and static assets also help organise the project - the

Django templating engine will then be able to look directly into a dedicated directory when

searching for HTML files, and all the static assets can be collected for the main web server

via a single management command when ready to deploy.

The core Django installation comes with applications and middleware for such common web

service requirements as authentication, authorization, sessions, static file management, and

more (Django Project Contrib, n.d.). Any further functionality can then be added to the

project via custom applications that are registered in the main settings.py file.

 19

5.3 Wagtail CMS

Wagtail is an open-source CMS that is built on top of the core web framework functionality

that Django offers. Like Django, it is also used by some extremely large companies such as

NASA, Mozilla, and the NHS (Wagtail CMS, n.d.).

As mentioned, Django is essentially a collection of apps making up a larger project, and each

app can contain various views, templates, and models. Wagtail adds several extra apps to the

basic Django installation, such as:

• wagtail.core - the core functionality of the CMS, including the Page model

• wagtail.admin - the Wagtail admin interface GUI

• wagtail.documents - support for managing uploaded documents

• wagtail.images - support for managing uploaded images

• wagtail.snippets - small, repeatable content that doesn’t justify an entire Page model

• wagtail.users - user management and permissions functionality

• wagtail.contrib.forms - support for managing submitted forms

• wagtail.contrib.modeladmin - support customising the admin interface

• wagtail.search - support for searching the content of the Wagtail application

Once installed, a certain namespace is configured in the Django root URL dispatcher and

then Wagtail will serve any requests that match that URL pattern.

The core of the Wagtail installation is a comprehensive Page model and the associated

hierarchy management. A Wagtail Page model is a Python class that essentially holds some

sort of content (usually an individual page on the site, such as the ‘About’ page) and

 20

exposes several methods that allow Wagtail to organise it with respect to the rest of your

content in a tree data structure (Figure 4). At the root of the site is a home page (usually at

the ‘/’ URL), and then various child nodes descend from here. Each node in the tree is an

instance of a Page model. When Wagtail receives an HTTP request, it will inspect the URL

and retrieve the appropriate Page model for the response.

Figure 4 – Wagtail Tree Data Structure

Internally, Wagtail uses the django-treebeard library (django-treebeard-readthedocs.io,

n.d.) to manage the data structure.

Fundamental to understanding how Wagtail works are two methods on the Page model:

• route - starting from the root node, this inspects the incoming request URL and

determines if this particular Page instance can serve a response or if it needs to pass

the request further down to its child node(s)

• serve - once a request reaches the appropriate Page instance for its URL, then the

serve method will construct the response from that particular instance using its

associated information in the database

 21

Wagtail also includes an admin interface that is a much more advanced and capable version

of the default Django admin interface, and allows a user to interact with the Page models, set

moderation workflows and live preview the site, amongst other things.

5.4 Django Rest Framework

Although traditionally used to generate HTML templates, Wagtail can also function as an

API via the open-source Django Rest Framework (Christie, 2011), or DRF. Much of DRF’s

functionality is abstracted away when installed and configured for use in Wagtail, but

it is a standard Django library (i.e. not limited to Wagtail). DRF essentially acts as a further

step in the resolution of an HTTP request by serialising and deserialising between the request

and response body JSON and the Python data structures required by the views. It uses a

dedicated Serializer class to perform this conversion, which is then referenced in the

appropriate view when required. The Serializer class can then be customised to only expose

certain fields, mark certain fields as read only, add access permissions and so on.

5.5 Docker

Docker is a containerisation software that allows developers to create, share and deploy

consistent environments for their applications. It is similar to a virtual machine (VM) in that

it acts as an isolating ‘wrapper’ around applications, but it is much more lightweight since it

 22

does not virtualise the underlying operating system - the applications run on a dedicated

daemon process known as the Docker Engine.

The main concepts behind Docker are images and containers. Images are the ‘blueprints’ for

a container, defined in a Dockerfile. The Dockerfile will have multiple steps on how to build

a particular image, copying in certain local files, installing packages, and running commands.

Once an image is built and you want to run your Dockerised application, you instantiate

‘containers’ from these images - the containers are then the running instances of your

application.

Docker is especially useful for Python applications as it removes the need for setting up,

configuring, and maintaining virtual environments (Python.org, 2019) across multiple

machines. When installing Python packages such as Django, it is recommended to install it

within a virtual environment, managed by a Python package manager such as pip or Poetry,

so as not to conflict with other applications - you may be running different versions of

Django between different projects on the same machine, or even different versions of Python

itself. The use of Docker removes this potential issue as the images are self-contained and can

use whatever dependencies are specified in their Dockerfiles, installed and isolated from the

rest of the machine.

 23

5.6 Swagger UI

Since the CMS solution has a headless architecture, it will require a separate frontend. For

this project, Next.js will be used (see below) to generate the static files required by the

existing native mobile wrapper application. However, during development, it will be

necessary to examine and understand the data structures that the CMS outputs for a given

URL. This could be done with a traditional HTTP client such as Postman (Postman, 2021) or

similar, but there are also libraries that can give a better developer UX.

The Swagger UI library is an open-source tool that provides a user-friendly interface for

visualising and interacting with APIs. Once installed, Swagger UI will generate an OpenAPI

Specification (Swagger.io, 2020) schema of your data and store it in a JSON or YAML file.

You also register an extra URL on your site to point at the appropriate Swagger functionality.

This schema and URL can then be used via a web browser to explore and interact with your

data in the same way your eventual frontend solution would.

5.7 Next.js

Next.js, often referred to as just Next, is an open-source production framework for building

web applications. It is based on the React JavaScript UI library and offers extra functionality

on top of core React such as integrated routing, serverless APIs and automatic code splitting.

Next is highly configurable and can serve individual pages as either server side rendered

 24

(SSR), client side rendered (CSR) as in a traditional single page app (SPA) or, as will be the

case in this project, generating a static build via a static site generation (SSG) process.

React (and therefore Next) uses the concept of discrete components to build out various

sections of a UI using JavaScript functions (or, previously, class instances). This makes it

particularly effective for building dynamic client applications with variable data structures, as

in this project. It is not necessary to build out lots of individual HTML templates to cover all

the possible data combinations - rather, the developer can create logic inside the components

to return what is known as JSX (JavaScript XML - an abstraction over HTML), and then the

returned markup for a given component will depend on what data is passed into the

component as arguments. Using this pattern, the CMS editor can create content in any

structure they require (within the Wagtail Page model limitations) - the front end will simply

format it as required during the build stage.

 25

6 Development and Functionality

6.1 Project Management

For project management, the various tasks and features were divided into two week sprints.

The content of these sprints was determined after analysing the proposed project schedule

from the Gantt chart submitted during CSC-40100.

Once identified, these sprints were organised and tracked using a Trello card system. The

tasks in Trello were organised using various labels and the board updated as sprints were

completed and functionality or deliverables were achieved. Any temporary roadblocks or

waiting periods were controlled via various columns of the Trello.

Fortnightly updates were also sent to the project supervisor. Details of these updates can be

found in Summative Assessment 3 – Progress Reporting.

During project planning, certain contingency plans were proposed in the event that the

intended functionality was found to not be achievable, either due to time constraints or

limitations in the proposed solutions. In the event of a minor time constraint, it was proposed

to drop the Swagger integration due to the alternative deliverable of a Postman HTTP client

collection to explore the API, and in the event of a major time constraint it was proposed to

drop the front end client build as the core project deliverable was the CMS platform. There

was also the option to drop the Swagger integration if it was found not to be technically

feasible, as there was limited information available during the project planning stage. In the

 26

event, the project ran ahead of schedule, the Swagger integration was successful, and these

contingencies were not required.

6.2 Project Architecture and Deployment

The CMS was developed and deployed inside a Docker container. This allowed for granular

control of the immediate environment that the server runs in and allows the CMS to

eventually be deployed on any service that can run Docker. Containerisation is especially

useful for a Python based framework such as Django, as it allows you to not use a virtual

environment and you can also specify the exact libraries to use during a build step via a

requirements.txt manifest or similar form within the Dockerfile

Django comes with a built in development server, but it is not recommended for production.

The standard pattern is to use the Gunicorn WSGI server interface to sit in front of the

Django instance, and then have a further web server in front of this. Gunicorn can then use

multiple worker processes (the number of which depending on CPU resources) to call

individual instances of the Django bootstrap, and a web server such as Nginx can sit in front

of Gunicorn and handle any static requests (stylesheets, images) to reduce load. Gunicorn

is available as a Python library so sits inside the CMS Docker container, but Nginx is added

as an extra Docker service.

For a full production deployment, it is likely that a hosted database solution such as AWS

 27

RDS (AWS, n.d.) or similar would be used, as it abstracts much of the administration of

running a database day-to-day (backups, security patche). However, for this project,

another Docker container was used to run a Postgres service for the server to interface with.

In total, the CMS has three Docker containers. To orchestrate this, a docker-compose.prod

YAML file (Figure 5) was used to configure them and ensure they interface correctly.

Figure 5 – Production docker-compose.prod.yml

 28

In Figure 5, the three services and their interfaces can be seen. Inside the Docker network, the

web (Django) service is exposed on port 8000. The Nginx configuration listening on external

HTTP port (80) is proxying requests from there to port 8000 within its nginx.conf file.

The web service contains a script that delays the start of the server until the database is

ready to accept connections – a common issue in a Docker system is that the container may

be running but the internal process may not actually be ready, causing synchronisation

problems (Docker Documentation, 2020).

Note the use of Docker volumes to persist certain data even if the stack is stopped

(postgres_data for the database, static_volume for static assets such as JavaScript and CSS,

and media_volume for images and video). These volumes are binds between the host file

system and the Docker containers, essentially making them mirror each other. The web

service and the Nginx service share access to the static_volume and the media_volume, so

the CMS can control the content and the web server can serve it.

Volumes also make it possible to develop inside running Docker containers by mirroring the

source code on the development machine into the container. This is exactly how this project

was developed, using a separate docker-compose.dev.yml file to map volumes appropriately

during development.

The full architecture of the project and the interfaces between the various services and

volumes can be seen in Figure 6:

 29

Figure 6 – Project Docker Architecture

By using this pattern, the entire stack is highly repeatable, and, in the case of the Guidelines

project, it would be trivial to quickly install and run another instance of the software for

another NHS Trust if required – once the codebase is available on the hosting service, simply

running the orchestration file with a build argument would create a new instance of the

Guidelines.

Another advantage of Docker is that, in future, it would be possible to add further

functionality and orchestrate it as a service. For example, it would be possible to have an

ElasticSearch (Elastic.co, 2019) service to improve search functionality, or a Celery

(docs.celeryq.dev, n.d.) worker service to hand off any blocking tasks from the main Django

execution threads (sending emails, for example).

 30

6.3 Project Functionality

6.3.1 Dynamic Content

As mentioned, a Wagtail Page model is a highly customised Django model, which is in itself

a Python class. Each model is generally represented by a table in a database, and each

instance of the class is represented by a table row. So, for example, Wagtail will create and

manage a table in the application database called wagtailcore_pages, and each row in this

table will contain the meta data for a particular page instance.

The Wagtail Page model inherits from the django.db.models.Model class, the base class for

all Django models. The Django base class adds functionality such as database operations,

field definitions and querying capabilities. The Wagtail subclass then adds methods and

properties to assist with the management of the Wagtail tree structure, URL routing, content

types and so on.

Beyond this, the developer is free to add extra fields and methods to their model to store

custom data or add functionality. Wagtail offers a large amount of basic field types in which

to store model data (such as TextField, URLField, ImageField, ForeignKey), and the

various super classes will handle the creation of appropriate database columns and

migrations on a schema change.

A core feature of Wagtail is the concept of a StreamField as a field type on a page. A

StreamField is a special type of field on a model that can store mixed content data. For

 31

example, a particular StreamField could be defined as being constructed of TextFields,

URLFields and ImageFields. Now, when an editor adds this particular StreamField to a page

instance in the admin area, they will create a StreamField that can be made up of any

combination of TextFields, URLFields and ImageFields, in any order and with as many

individual instances of the sub-fields as required, within the constraints of the particular

StreamField configuration. The content can also be rearranged at a later date, have extra

fields added or remove others.

Figure 7 – Wagtail StreamField Pattern

Wagtail stores these StreamFields, along with the rest of the page content, in a table related to

the wagtailcore_pages table as JSON. By storing the information as JSON, it is possible to

rearrange it as required by the editor, and there are few constraints on its structure – if it is

saved in a valid JSON structure, the database can store it.

 32

Figure 8 – JSON Page Body Content

Note that adding or removing entire new fields is possible but would require a database

migration (handled by Django management command system) to maintain synchronisation

with the application models.

Figure 9 shows two instances of the same Page model but with different content structures:

Figure 9 – Example of Mixed Content

By default, Wagtail offers the following content types for a StreamField:

 33

• RichTextBlock - WYSIWYG editor

• Charfield - for titles, subheadings etc

• ChoiceBlock - for dropdown menus

• ImageChooserBlock - for images

• VideoChooserBlock - for media

Beyond these, the project was extended, either via third party libraries or within code, to

provide the following extra content types:

• CalculatorBlock – select appropriate medical calculator

• FlowChartBlock – select appropriate medical flowchart

• LabelBlock – select appropriate label

• TrustSpecificContentBlock – select trust specific content block

• MathBlock – select an equation block (supports MathJax syntax)

• TableBlock – select an HTML table

For content such as the CalculatorBlock and the FlowChart block, the content types were

simple ChoiceFields that allows the editor to pick a certain medical calculator or flowchart.

Within the live preview, this value could then be used on the page context within the

templates to render the appropriate markup. On a frontend build, it could be used to return the

appropriate component (in a React based framework such as Next.js, for example).

The LabelBlock had two fields – one a ChoiceField for the label type (Information, Warning

or Danger) and a TextField to add label text.

The TrustSpecificContent block had two fields – one a ChoiceField to select the appropriate

 34

NHS Trust, and a TextField to add Trust specific content. This could easily be expanded to

include other fields to increase functionality.

The MathBlock used an external library (Ramm, 2022), again showing the advantages of

using already existing solutions and extending existing functionality.

The TableBlock is available from Wagtail core with some extra configuration

(docs.wagtail.ord – TableBlock, n.d.)

6.3.2 Regional Content

The current solution involves individual NHS Trusts manually updating their own HTML

with regional content, but this has several issues:

• Inconsistent markup with the rest of the guidelines

• Laborious

• No centralised moderation

• Effectively multiple versions of the guidelines in existence and issues with the

associated version controlling

• Doesn’t take advantage of CMS live preview or diffing functionality

• Doesn’t take advantage of the build steps of modern frameworks (i.e. minification)

This project suggests having a dedicated content type available within the mixed content

body where trust specific information could be entered and stored with the rest of the

guideline content. As an example, the Next.js frontend has a TrustSpecific.js component that

checks a build argument for a given context and, if it matches, outputs the content for the

 35

markup. If the build argument for a given piece of content does not match, it returns null.

Figure 10 – Returned CMS JSON for ‘Bone Cancer’

Figure 11 – Client Side Filtering by NHS Trust

 36

Figure 12 – Example of Filtered NHS Eastern Trust Build

This solves many of the previously mentioned issues, such as maintaining a consistent

markup structure, removing the requirement to manually edit HTML files, allowing the live

preview and diffing functionality to be leveraged and keeping the content within the content

version control framework. On a build step before a release, build arguments could be used to

output specific NHS Trust versions of the Guidelines, filtering out irrelevant information.

 37

Since Wagtail also has advanced moderation and workflow capability (see 6.3.4 - Multiple

User Levels and Moderation System), it would also be possible to configure workflows to

have appropriate users at various Trusts view and approve the Trust specific content before

publication.

6.3.3 Live Preview

In a standard Wagtail installation, Wagtail itself would generate the web pages for requests in

much the same way that Django would – a request is received via the URL dispatcher, any

extra data is recovered from the query string or request body, and web pages are generated

using a combination of templates, CSS, scripts and, if required, data from the database. In

such cases, it would be trivial to add a live preview functionality because Wagtail would use

the same templates that are used to serve the HTTP requests and could determine which one

to use via the page URL in the associated database table.

However, this project has been configured to run headless and return JSON for HTTP

requests. For this reason, it was necessary to also create individual templates for each of the

provided content types and to explicitly point the various block content types to the

appropriate templates in code. There is also a guideline.html template that the overall

GuidelinePage model points to, which receives the page data context and then iterates

through, returning the appropriate block content for each content type in the page data.

 38

Figure 13 – The Guideline Model Pointing to guideline.html

Figure 14 – Django Template for guideline.html

 39

Figure 15 – Example of a Content Subblock

The guideline.html in Figure 14 shows how Wagtail can then dynamically generate the

appropriate HTML to use in the live preview functionality.

• The GuidelineModel is instantiated on a request for the page preview

• The model points to the appropriate template and passes a page context object

(containing the appropriate information from the database)

• During rendering, the templating engine has access to this context as a Python

dictionary, as can be seen by the various steps of the template inspecting for

properties on the page dictionary

• The guideline.html file will then return appropriate sub blocks of HTML (such as

subheading.html in Figure 15), passing in further context as required

To prevent confusion and potential errors for unavailable templates, the live preview

functionality was also explicitly disabled on the root page model and the sub-section models.

Figure 16 shows an example of the live preview functionality from within the CMS. Note

within the panel that the preview can also be changed between mobile, tablet and web views

to confirm the responsive behaviour of the page:

 40

Figure 16 – Live Preview Functionality

6.3.4 Multiple User Levels and Moderation System

Wagtail is, at its core, a CMS used for managing large amounts of information. Large

companies such as NASA and Google (Wagtail CMS – Who Uses Wagtail?, n.d.) use Wagtail

precisely because it allows them to control large amounts of content in a structured way.

When managing large amounts of information, there are several things to consider. Firstly,

who has authorisation to make certain changes? Under the principle of least

privilege, or PoLP (Saltzer, 1974), it is generally considered bad practice to allow blanket

access to every user – beyond any potential malicious actions, there is also the possibility of

users being overwhelmed by the amount of information presented to them if they are not a

more experienced user. By restricting what a particular user can see, you reduce the potential

 41

for confusion.

With a CMS, there is also often the need for a particular piece of content to go through a

moderation process before it is considered available. In the Guidelines project, for example,

this could include certain medical related steps that would need to be approved on a given

piece of content – perhaps a particular field expert would need to review any edits a

more junior colleague made to a guideline before it could be considered acceptable for

clinical use.

A full user authentication and authorisation system, with various levels of access and all the

related functionality (i.e., registration, log in, password reset), would be a large project in

itself. Trying to integrate it into a custom moderation system would increase the complexity

even further. Here is yet another example of why extending an existing, proven solution is

often much more practical than developing from the beginning.

To understand the user and moderation process in Wagtail, there are four concepts to

understand:

• Users

• Groups

• Tasks

• Workflows

A user is an individual account within the CMS, containing information such as the users

name and email address. Users can be assigned to groups.

 42

A group is a collection of users with the same privileges. Once a group is created, Wagtail

allows you to grant certain actions that the group is allowed to perform within the CMS.

Some examples of these actions include:

• Access to the admin area

• Object permissions – editing other users, groups, tasks

• Page permissions – editing the Page instances (i.e., the content)

• Image permission – editing images

Figure 17 is an example of the current Editor permissions, showing that members of the

‘Editor’ group can Add, Edit and Delete Pages, but cannot Bulk Delete, Lock or Unlock.

Note the above Page Permissions in Figure 17 are on the ‘Root’ Page, which means the

permissions apply to all Page instances on the site – this can be adjusted to be more granular

and give a particular group access to only a subtree of the overall Page tree.

For moderation steps, Wagtail uses the concepts of tasks and workflows. A workflow is a

complete moderation pathway that includes one or more tasks in sequence.

A task is an individual stage of moderation. For example, a site admin may want to create a

moderation step where, to approve a cancer related guideline, a senior cancer specialist has to

give medical approval. To implement this, a task is created and associated with a group

containing the senior cancer specialists. When the content reached this stage of moderation,

 43

Figure 17 – Example of ‘Editor’ Group Permissions

all members would receive a notification and it would have to be approved by a member of

this group to continue its publishing process.

Workflows are combinations of tasks ordered in an appropriate way. Continuing the cancer

example above, there may be three tasks in the wider workflow – the initial editor task for

making the appropriate changes, the specialist task for approving the changes, and a final

moderator task to release to published. The content would have to pass all three stages of

moderation, in order, to be accepted. At each stage, if rejected, the content would move back

a step in moderation and would have to be resubmitted.

As well as making the workflows highly configurable, this pattern also means changes to

these workflows can be made inside the admin GUI, rather than in code, meaning a

moderately advanced user with appropriate permissions could reconfigure as necessary

without requiring a code redeployment.

 44

Figure 18 – Wagtail Moderation System

6.3.5 Diffing Functionality

For every node on the content tree, Wagtail stores an entry in the watailcore_page table

within the database. It contains information on the node such as position in the tree, the

number of children it has, the node page title, page content and its site URL.

Figure 19 – wagtailcore_page database table

 45

When content is changed via the CMS, Wagtail will not only update the relevant entry in the

table but will also create a copy of the original content and make an entry into the

wagtailcore_revision table.

For example, from Figure 19, it can be seen that the ‘Bone Cancer’ page has a primary key of

5. Referencing the wagtailcore_revision table in Figure 20, it can be seen that there are

multiple entries with an object_id field of 5 within the content column of the table

Figure 20 – wagtailcore_revision database table

In this way, Wagtail can keep a record of all the revisions to a particular piece of content.

This allows for the implementation of a diffing view between revisions from within the CMS.

Removed content is then highlighted in red, and new content is highlighted in green, as

shown in Figure 21.

 46

Figure 21 – Example of Diff View

6.3.6 Search Functionality

The search implementation is another example of how the underlying Django platform can be

utilised to extend the functionality of the existing Wagtail site.

As mentioned in 5.2 – Django Web Framework, a Django server is essentially a collection of

Python modules known as apps registered in the main settings.py file. The root URL

dispatcher can then inspect incoming URLs and call the appropriate functions, which should

then return an HTTP response. The search functionality is one such extra app, where the URL

dispatcher will pass any request URLs matching the /api/v2/search pattern to the search app,

and ultimately the below search function within its views.py file.

 47

Figure 22 – Search app views.py

Note that this search app sits outside of the Wagtail URL space, and the Wagtail site is not

even aware of it – it is a Django app reading from the Wagtail database tables via

the Django ORM.

Also note the Guideline database tables only contain the page content, whereas the Page

tables also contain the Wagtail specific information (moderation status, node position in tree,

URLs). Searching the Guideline table rather than Page directly prevents any of these

extra fields from polluting the search results.

 48

The above search function then processes the request URL as follows:

• It attempts to extract any search parameters from the incoming URL query string

• If a search query is found, the function checks the guidelines_guideline table and

extracts any ‘live’ (i.e., published) entries that contain the search parameters

• Using the Page IDs extracted in the previous stage, the function then extracts the full

Page entry from the wagtailcore_page table

• The Page title and id fields are extracted from the results – note any further

information from the Page instance could be added here if required

• The data is still in the Django QuerySet format used for processing with Python, and

so it is converted to JSON

• An HTTPResponse is returned from the function, containing the search results as a

JSON payload

Using the Postman HTTP client, the results of a search for cancer can be seen below:

Figure 23 – Example of Search API Response for ‘cancer’

 49

6.4 Project Deliverables

6.4.1 Hosted CMS

Once successfully tested locally, the CMS was deployed to a DigitalOcean Droplet (Droplets,

2023). A Droplet is a Linux based virtual machine and can be configured to run the Docker

engine required for this project. Once provisioned, it can be accessed remotely over an SSH

session.

The codebase was developed using Git version control and hosted on a private GitHub

repository. Once the Droplet was configured to have the appropriate SSH key to access the

repository, the codebase was cloned to the Droplet and the Docker orchestration file (the

docker-compose.prod.yml from Figure 5) executed. This then builds the Docker stack, either

building the appropriate images from the local Dockerfile (as it the case for the Django and

Nginx services) or pulls the appropriate image from a public repo (as with the PostgreSQL

service).

Once built, a new Django superuser can be created to allow access to the admin area, and the

Droplet firewall can be configured to allow HTTP access on port 80.

As of submission of this report, the hosted CMS is available at http://134.209.185.104/admin

 50

Figure 24 – Hosted CMS Login

Note that HTTPS was not configured for the purpose of the prototype, but this could also be

added either manually or as another service from within the Docker orchestration file.

6.4.2 Exposed API

The CMS API is available to an HTTP client such as Postman (or even for terminal cURL

requests) at the /api/v2 path of the URL. However, this project used the Swagger UI library to

generate a browser based interface to allow developers to explore the API.

As of submission of this report, the Swagger interface is available at

http://134.209.185.104/api/v2/docs

 51

Figure 25 – Swagger UI Interface

6.4.3 Static Builds

Ultimately, the Wagtail CMS has to act as a data store for the eventual frontend solution. The

current frontend is a native mobile app that wraps static markup. To prove that the Wagtail

solution could be used as the backend for the existing setup, a static build was generated

using Next.js, an extension of the React UI library. This static build could then be loaded into

the existing wrapper application.

React creates an application by rendering various UI components. These components are

essentially functions that return different parts of an overall UI and can be configured via the

use of props (analogous to the arguments you would pass to a normal function) and state

(information the application needs to maintain between renders). Traditionally, React is used

 52

as a SPA and so the UI is created dynamically on the client machine via JavaScript

interacting with the DOM, but Next.js allows for a static build to be generated via the

WebPack build tool (or, in more modern versions of Next.js, TurboPack).

Since the individual Guideline pages have a dynamic structure, a component based solution

such as React is well suited to generating the markup. It is not necessary to create multiple

pages to reflect the different structures of the pages – a single React higher order component

can receive the JSON for the appropriate Guideline from the API, and then conditionally

render the content based on what is present in the payload.

Figure 26 shows a simplified example of how the Guildeline.js component was implemented:

Figure 26 – Simplified Example of Guideline Component

 53

• Various other components are imported at the top of the file

• The ‘pageData’ object (i.e., the appropriate JSON from the CMS) is passed down into

the Guideline component as props (arguments)

• An empty array ‘components’ is initialised

• The ‘pageData’ object is iterated with a forEach loop

• On each iteration, the type of content is inspected, and then the appropriate

component is called, receives props, and is pushed into the ‘components’ array

• The Guideline component returns a spread of the ‘components’ array

The effect of this pattern is that the Guideline will return a collection of sub-components

relative to the received pageData prop contents. These sub-components will then generate the

more detailed views, depending on the props they receive. This allows a single file to

generate static markup for any particular combination of content types.

Two copies of the static build are to be submitted with this report – two are required to

confirm that the trust specific filtering integrated to the Next build step is working as

expected. Below shows the output from the Next.js build process:

Figure 27 – Next.js Build Process

 54

In the build process of Figure 27, it can be seen that Next has used the [guideline] component

to generate all of the Guideline pages. _app is the main index page, and then all the CSS and

JS assets have been combined, minified, and chunked for performance via TurboPack. This

professional build process is a significant advantage of using a frontend framework to

generate the static build, rather than manually writing and updating HTML markup.

Figure 28 shows the ‘Bone Cancer’ page from two different builds – one for the ‘EAST’

Trust, and one for the ‘WEST’ Trust. Note the content is all the same, except for the trust

specific content.

Figure 28 – Differing Trust builds

 55

7 Testing

The project planning document provisioned for three different testing sprints:

1. CMS Testing

2. API Testing

3. Frontend Testing

All test sprints were scheduled to last for a week to give sufficient time to confirm

functionality. The priority was to get the CMS developed and deployed, as no substantial

testing could be started until that stage – the API testing required a populated database to test

against, and the frontend required an API to read data from.

The testing strategy used was general user acceptance testing, with the developer using the

CMS, the Swagger interface, and the client builds to confirm that the system was behaving as

expected. This is acceptable for a proof of concept project with a single developer, but would

likely not be the most efficient testing strategy if the project was taken forward (see 8.2.1 –

Improved Testing Strategy).

The Next.js frontend also comes with a built in linting library to assist with identifying

potential code issues during the development phase.

 56

7.1 Identified Issues

During testing, a potential issue was discovered relating to serving images and media over

HTTP.

The CMS was hosted on a DigitalOcean VPS on an HTTP URL. During development of the

frontend, this was not an issue as the Next development server hosted the images and media

without error.

However, after building, the original plan was to deploy the static frontends to a deployment

service such as Netlify or Vercel to allow for easier marking. This caused an issue as these

platforms were enforcing a no mixed-content policy (web.dev, 2020) – this is an enhanced

security feature that prevents HTTP assets being loaded on an HTTPS page. It prevents, as

an example, cookies set on an HTTPS domain being sent over an HTTP connection. For this

reason, the images and media hosted on the CMS would not load.

There are solutions for this – for example, the images and media could be moved into the

build step and therefore hosted on the same domain, or the CMS configured to serve over

HTTPS, but both of these options would have involved considerable work not involved with

the core project deliverables.

It was agreed with the project supervisor that a copy of the static build could be hosted

locally on the marking member of staff’s machine using a local web server. As a

development server, this would get around the HTTPS only enforcement.

 57

8 Conclusions and Potential Future Development

8.1 Project Feedback

Project feedback was received from Professor Ed de Quincey, the project contact at the

University (see Appendix for email).

Professor de Quincy thought that the platform was a viable solution to the original brief, with

a simple enough interface to allow people with basic IT skills to be able to use it as intended.

This was the key aim of the project and shows that Wagtail could be a potential platform for

the Medical Guidelines project.

In particular, Professor de Quincey liked the live preview functionality that comes as standard

with Wagtail, and has asked the project developer for the actual platform to recreate

something similar.

The identified potential issues included some of the admin UI not being entirely intuitive, and

that the report structure was not quite matching of the actual guidelines. However, the admin

UI could have been improved with further development time and user testing feedback, and

limited access to actual guidelines had restricted how accurately the prototype versions could

be matched up – since the Wagtail models can essentially be structured in any way the

developer requires, I feel confident that they could be an exact match if the full brief was

made available.

 58

8.2 Ideas for Future Development

8.2.1 Improved Testing Strategy

For a proof of concept, the current lack of robust testing beyond basic functionality is not a

huge issue, but if the project was taken forward as a viable commercial solution then a more

complete testing strategy should be implemented.

Django comes with the Python unittest testing framework as standard for writing tests,

although PyTest (docs.pytest.org, n.d.) is another popular testing library. Wagtail itself is a

well tested framework and so the core functionality of the CMS should be reliable, but it

would increase the robustness of the platform if sufficient unit tests were written against the

API. PyTest allows you to mock HTTP requests and use test databases, so it is possible to

write tests covering the normal CRUD operations of your content and make the appropriate

assertions against them.

For the frontend, a possible solution would be the Cypress (Cypress, n.d.,) testing

library. Cypress is technology agnostic and, as long as the application can run in a browser,

Cypress can run tests against it. Cypress is mainly used for end to end testing for entire user

journeys such as authorisation, navigation, and interactions, but can also run unit and

integration tests if required.

Both PyTest and Cypress can be integrated into a CI/CD pipeline such as GitHub Actions or

AWS CodePipeline to confirm functionality before an application build or deploy.

 59

8.2.2 Monolithic Codebase

This project was primarily about proposing Wagtail as a viable solution for the content

authoring requirement of the wider Clinical Guidelines project. Next.js has been used to

prove that a headless Wagtail configuration could supply JSON for an already existing

frontend client.

However, Wagtail is at its core a web server, serving its own HTML templates in response to

web requests. Traditionally, it runs in a Python environment on a server and dynamically

creates the required pages in response to HTTP requests. During research for this project, the

wagtail-bakery package (Github, 2023) was discovered which allows a developer to create a

static export of the entire Wagtail site. This could potentially entirely remove the need to

support a frontend client, and run the entire project via Wagtail using the standard templating

system. As well as removing the frontend client, it would also remove the duplicated work of

creating separate templates for the live preview as Wagtail would simply use the production

templates instead.

8.2.3 Managed Services

For the proof of concept, the Docker services include a PostgreSQL database with an

associated volume. The CMS images and media files are also stored on volumes, served via

the Nginx reverse proxy.

 60

For a production environment, a managed database service would be preferable. This would

remove all database administration tasks such as backups, patching and performance

monitoring to a third party, specialised service.

Similarly, the static assets could be moved to a third-party service and even served via a CDN

if required. This removes further unnecessary load from the web server and allows it to

concentrate on handling core business logic. Like the database third party services, a

managed file storage service such as AWS S3 or DigitalOcean Spaces would also likely offer

backup functionality and other optimizations.

8.2.4 Stack Review

In hindsight, the Swagger interface, although still useful, was perhaps not entirely necessary

for this project. Wagtail abstracts much of the URL management from the user, and since the

frontend is essentially static without much mutation activity towards the server (i.e., POST,

PUT and DELETE requests), there is not a large number of useful endpoints exposed via the

Swagger interface. In this instance, a comprehensive Postman collection or similar would

have likely been sufficient. Although it could be argued that it may as well be used since it is

already installed, it is generally considered good practice to remove unnecessary libraries in a

production environment. This reduces the surface area of the codebase and means one less

library to maintain.

 61

8.3 Conclusions

The core requirement of the initial project brief was to ‘produce a web- based application

where users can utilise CRUD functions … with existing guideline documents.’ The Wagtail

solution delivers this - users can create and edit Guidelines within the constraints of the

appropriate Page model. A combination of core Wagtail content types, custom content types

and third party libraries mean that any realistic combination could be delivered to match the

requested guideline structure.

Another requirement was to ‘implement a multi-level user admin system.’ As a CMS already

used by many major companies to manage their own content, Wagtail offers a sophisticated,

out of the box solution involving management of user accounts, delegation of various levels

of privilege and highly configurable workflows to assist in the management of content from

draft to publishing, including the necessary moderation steps required for complex content

types with multiple stakeholders. Such a system would be highly complex to implement

natively, and it would save large amounts of development and testing time by using an

already proven configuration such as that offered by Wagtail.

The brief also required that the system be tested ‘to ensure it meets usability guidelines.’

Whilst some of the feedback suggested that there could be improvements made in this area,

the Wagtail admin is highly customisable, and with extra UI/UX research, user testing and

feedback, and further development time, the editing interface could be made more intuitive

 62

and better suited to the specific project needs. As previously mentioned, there

is also comprehensive existing documentation for the editor interface, separate from the

more involved developer documentation.

In conclusion, the Wagtail platform is clearly a potential solution for the initial project

specification - it delivers on the core requirements, and even has potential advantages over

the bespoke solution currently in development.

Primarily, as an existing solution with much of the core functionality already proven, the

development time would be much less. Wagtail has already had many hours of

development and testing time dedicated to it. There are likely to be many complexities

involved in creating, from scratch, a feature such as a moderation system and it would be

quite difficult to predict exactly how long and how much resource that might take to realise.

There is also the advantage of using a well-maintained solution backed by a large existing

community and prominent technology companies – beyond simple functionality, there is also

the extra work that has gone into other areas of the platform that might not be considered or

have the resource for a bespoke solution, such as third party libraries to extend functionality,

accessibility testing (Wagtail Accessibility, 2023) and existing test suites.

Finally, there is the issue of institutional knowledge – when building a complex, bespoke

software solution, a project (especially a smaller one) is often vulnerable to losing certain key

members. The more complex the solution, the harder it may be to replace them and the longer

amount of time it may take to get new project members or consultants onboarded. With an

 63

open-source solution such as Wagtail, any Wagtail (or even Django) developer can quickly

get up to speed with the application and make useful contributions,.

The obvious major advantage of a fully bespoke platform would be that it can essentially be

customised to a customer’s exact needs, but for the case of what is ultimately a variation of a

very common existing requirement on the Internet – a content repository with a moderately

complex moderation workflow and several user levels – it could be argued that any potential

custom application is simply duplicating a solution that has already been created and proven.

 64

References

Amazon Web Services, Inc. (n.d.). Free Databases - AWS. [online] Available at:
https://aws.amazon.com/free/database/ [Accessed 20 Jun. 2023].

Christie, T. (2011). Home - Django REST framework. [online] Django-rest-framework.org.
Available at: https://www.django-rest-framework.org/.

Cypress (n.d.). Open-Source E2E Testing Tools & UI Testing Framework | cypress.io.
[online] Available at: https://www.cypress.io/app/ [Accessed 28 Jun. 2023].

Django (2019). The Web framework for perfectionists with deadlines | Django. [online]
Djangoproject.com. Available at: https://www.djangoproject.com/.

Django Project Contrib. (n.d.). Django. [online] Available at:
https://docs.djangoproject.com/en/4.2/ref/contrib/ [Accessed 20 Jun. 2023].

django-treebeard.readthedocs.io. (n.d.). django-treebeard — django-treebeard 4.0.1
documentation. [online] Available at: https://django-treebeard.readthedocs.io/en/latest/
[Accessed 19 Jun. 2023].

Docker Documentation. (2020). Control startup and shutdown order in Compose. [online]
Available at: https://docs.docker.com/compose/startup-order/.

docs.celeryq.dev. (n.d.). Celery - Distributed Task Queue — Celery 5.2.7 documentation.
[online] Available at: https://docs.celeryq.dev/en/stable/index.html.

docs.pytest.org. (n.d.). pytest: helps you write better programs — pytest documentation.
[online] Available at: https://docs.pytest.org/en/7.3.x/.

docs.wagtail.org. (n.d.). TableBlock — Wagtail Documentation 5.0.1 documentation. [online]
Available at: https://docs.wagtail.org/en/stable/reference/contrib/table_block.html [Accessed
20 Jun. 2023].

docs.wagtail.org. (2023). Welcome to Wagtail’s documentation — Wagtail Documentation
5.0.1 documentation. [online] Available at: https://docs.wagtail.org/en/stable/ [Accessed 19
Jun. 2023].

Download Django (n.d.) | Django. [online] Available at:
https://www.djangoproject.com/download/.

Droplets (2023) Digitalocean.com. Available at:
https://www.digitalocean.com/products/droplets (Accessed: June 28, 2023).

Elastic.co. (2019). Open Source Search: The Creators of Elasticsearch, ELK Stack & Kibana
| Elastic. [online] Available at: https://www.elastic.co/.

 65

GitHub. (2023). Wagtail-bakery. [online] Available at: https://github.com/wagtail-
nest/wagtail-bakery [Accessed 28 Jun. 2023].

gunicorn.org. (n.d.). Gunicorn - Python WSGI HTTP Server for UNIX. [online] Available at:
https://gunicorn.org/.

MDN Web Docs. (n.d.). Django introduction. [online] Available at:
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction.

Meta Open Source (2023). React. [online] react.dev. Available at: https://react.dev/.
Mitchell, James Anthony (2022) User-centred design of bedside clinical guidelines for
mobile devices. Doctoral thesis, Keele University.

Mitchell, J.E., Ed de Quincey, Pantin, C.F.A. and Naveed Mustfa (2020). The Development
of a Point of Care Clinical Guidelines Mobile Application Following a User-Centred Design
Approach. doi:https://doi.org/10.1007/978-3-030-49757-6_21.

Mitchell, J.E., Ed de Quincey, Pantin, C.F.A. and Naveed Mustfa (2021). 15 Usability
Recommendations for Delivering Clinical Guidelines on Mobile Devices. 2021. DOI:
10.14236/ewic/HCI2021.7

nextjs.org. (n.d.). Next.js by Vercel - The React Framework. [online] Available at:
https://nextjs.org/.

NHS Digital. (2018). NHS.UK content migration update. [online] Available at:
https://digital.nhs.uk/blog/transformation-blog/2018/nhs.uk-content-migration-update.

npm. (2020). npx. [online] Available at: https://www.npmjs.com/package/npx [Accessed 8
Jul. 2023].

Pantin, C., Mucklow, J., Rogers, D., Cross, M. and Wall, J. (2006). Bedside clinical
guidelines: the missing link. Clinical Medicine, 6(1), pp.98–104.
doi:https://doi.org/10.7861/clinmedicine.6-1-98.

Pereira, V.C., Silva, S.N., Carvalho, V.K.S., Zanghelini, F. and Barreto, J.O.M. (2022).
Strategies for the implementation of clinical practice guidelines in public health: an overview
of systematic reviews. Health Research Policy and Systems, [online] 20(1).
doi:https://doi.org/10.1186/s12961-022-00815-4.

Postman (2021). Postman | The Collaboration Platform for API Development. [online]
Postman. Available at: https://www.postman.com/.

Python.org. (2019). venv — Creation of virtual environments — Python 3.8.1
documentation. [online] Available at: https://docs.python.org/3/library/venv.html.

Ramm, J. (2022). WagtailMath. [online] GitHub. Available at:
https://github.com/JamesRamm/wagtailmath [Accessed 20 Jun. 2023].

 66

Saltzer, J. H. (1974) “Protection and the control of information sharing in
multics,” Communications of the ACM, 17(7), pp. 388–402. doi: 10.1145/361011.361067.

Smith, H., Pryce A, Carlisle, L., Jones, J.R., Scarpello, B. and Pantin, A. (1998).
Appropriateness of acute medical admissions and length of stay. 31(5), pp.527–32.

StackShare. (n.d.). Why developers like Django. [online] Available at:
https://stackshare.io/django.

Swagger.io. (2019). The Best APIs are Built with Swagger Tools | Swagger. [online]
Available at: https://swagger.io/.

Swagger.io. (2020). OpenAPI Specification - Version 3.0.3 | Swagger. [online] Available at:
https://swagger.io/specification/.

Wagtail Accessibilty. (2023). Introducing Wagtail’s new accessibility checker. [online]
Available at: https://wagtail.org/blog/introducing-wagtails-new-accessibility-checker/
[Accessed 8 Jul. 2023].

Wagtail CMS. (n.d.). Django Content Management System. [online] Available at:
https://wagtail.org/.

Wagtail CMS. (n.d.). Who Uses Wagtail. [online] Available at: https://wagtail.org/who-uses-
wagtail/.

Wagtail Guide. (n.d.). Wagtail User Guide. [online] Available at:
https://guide.wagtail.org/en-latest/.

web.dev. (n.d.). What is mixed content? [online] Available at: https://web.dev/what-is-mixed-
content/ [Accessed 8 Jul. 2023].

 67

Appendix

From: Ed de Quincey <****@********>
Date: Friday, 30 June 2023 at 14:18
To: Daniel Bayford <****@********>
Cc: Beran Necat <****@********>

Subject: Re: Deployed Wagtail CMS

Here you go:

1. From your initial exploratory use, would you see Wagtail as a potential solution for the
content authoring platform?

Yes. I think this looks simple enough to use for people with basic IT skills. There are some small
usability tweeks that would be needed to make certain interactions clearer (that I assume are part of
Wagtail) but overall this supports the key functionality and processes that would be needed.

2. What in particular do you like about the platform?

I thought the side by side editing was the best feature and is something I’ve shown the developer of
the CMS we are currently finalising and asked him to make something similar.

3. Are there any obvious issues?

The only issues relate to not quite fitting the structure of the guidelines but that is due to you not
having access to the full set and I imagine would be trivial to include with more time and feedback
from us.

Best wishes,

Ed

Professor Ed de Quincey SFHEA, FBCS

School of Computer Science and Mathematics
Keele University

